On extremals of the entropy production by "Langevin–Kramers" dynamics

Paolo Muratore-Ginanneschi

Department of Mathematics and Statistics University of Helsinki

6th Paladin Memorial "Large deviations and rare events in physics and biology" Roma, September 23-25, 2013

Physical motivation and previous results

- Stochastic Thermodynamics of Langevin–Smoluchowski models
- Relation with optimal mass transport

Entropy production by Langevin–Kramers
 Stochastic Thermodynamics of Langevin–Kramers models
 An explicitly solvable case

The "over-damped" Langevin–Smoluchowski limit
 Multiscale perturbation theory

Physical motivation and previous results

- Stochastic Thermodynamics of Langevin–Smoluchowski models
- Relation with optimal mass transport

Entropy production by Langevin–Kramers
 Stochastic Thermodynamics of Langevin–Kramers models
 An explicitly solvable case

An explicitly solvable case

The "over-damped" Langevin–Smoluchowski limit
 Multiscale perturbation theory

Physical motivation and previous results

- Stochastic Thermodynamics of Langevin–Smoluchowski models
- Relation with optimal mass transport

Entropy production by Langevin–Kramers
 Stochastic Thermodynamics of Langevin–Kramers models

- An explicitly solvable case
- The "over-damped" Langevin–Smoluchowski limit
 Multiscale perturbation theory

Physical motivation and previous results

- Stochastic Thermodynamics of Langevin–Smoluchowski models
- Relation with optimal mass transport

Entropy production by Langevin–Kramers
 Stochastic Thermodynamics of Langevin–Kramers models

- An explicitly solvable case
- The "over-damped" Langevin–Smoluchowski limit
 Multiscale perturbation theory

Small systems and Optimization

- At mesoscopic scales, the size of the fluctuations are of the same order of the magnitude of the observables.
- Nonequilibrium fluctuation relations imply that dynamical fluctuations contrary to the thermodynamic forces are likely to occur in small systems.

Molecular motors

Convert chemical energy into mechanical motion. Cyclic isothermal operation at fairly high efficiency.

Nano engines

Cyclic or steady operation in the presence of gradients or not. What is the cycle that maximizes the output power?

A kinesin motor walking along a microtubule Bustamante, et al. Physics Today, 2005, 58, 43-48

Small systems and Optimization

- At mesoscopic scales, the size of the fluctuations are of the same order of the magnitude of the observables.
- Nonequilibrium fluctuation relations imply that dynamical fluctuations contrary to the thermodynamic forces are likely to occur in small systems.

Molecular motors

Convert chemical energy into mechanical motion. Cyclic isothermal operation at fairly high efficiency.

Nano engines

Cyclic or steady operation in the presence of gradients or not. What is the cycle that maximizes the output power?

A kinesin motor walking along a microtubule Bustamante, et al. Physics Today, 2005, 58, 43-48

Small systems and Optimization

- At mesoscopic scales, the size of the fluctuations are of the same order of the magnitude of the observables.
- Nonequilibrium fluctuation relations imply that dynamical fluctuations contrary to the thermodynamic forces are likely to occur in small systems.

Molecular motors

Convert chemical energy into mechanical motion. Cyclic isothermal operation at fairly high efficiency.

Nano engines

Cyclic or steady operation in the presence of gradients or not. What is the cycle that maximizes the output power?

A kinesin motor walking along a microtubule Bustamante, et al. Physics Today, 2005, 58, 43-48

From fluctuation relations to optimal control: ground-breaking and stepping stones

Fluctuation relations, time reversal and stochastic thermodynamics

- Gallavotti & Cohen, Phys. Rev. Lett., 74, 2694-2697 (1995).
- Jarzynski, Phys. Rev. Lett., 78, 2690-2693 (1997).
- Kurchan, J. Phys. A, 31, 3719 (1998).
- Lebowitz & Spohn, Stat. Phys., 95, 333-365 (1999).
- Maes et al., J. Math. Phys., 41, 1528-1554 (2000).
- Chétrite & Gawdzki, Comm. Math. Phys., 282, 469-51 (2008).

Optimal control of finite-time thermodynamics

• Schmiedl & Seifert, Phys. Rev. Lett., 98, 108301 (2007).

Transition between two assigned states in a finite time horizon $[t_{\rm o}\,,t_{\rm f}]$

Transition between two assigned states in a finite time horizon $[t_{\rm o}\,,t_{\rm f}]$

Stochastic Thermodynamics Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998)

$$\mathrm{d}\boldsymbol{\xi}_t = -\partial_{\boldsymbol{\xi}_t} U(\boldsymbol{\xi}_t, t) \, \frac{\mathrm{d}t}{\tau} + \sqrt{\frac{2}{\beta \, \tau}} \mathrm{d}\boldsymbol{\omega}_t$$

Fluctuating heat release during the horizon $[t_0, t_f]$

$$\mathcal{Q}_{t_l,t_a} = -\int_{t_a}^{t_l} \mathrm{d}\xi_l \stackrel{\diamond}{\cdot} \partial_{\xi_l} U(\xi_l,t)$$

Fluctuating work during the horizon $[t_o, t_f]$

$$W_{t_l,t_o} = \int_{t_o}^{t_l} \mathrm{d}t \, \partial_t U(\boldsymbol{\xi}_t,t)$$

First law of thermodynamics in $[t_o, t_f]$

$$W_{t_{\mathrm{f}},t_{\mathrm{o}}} - \mathcal{Q}_{t_{\mathrm{f}},t_{\mathrm{o}}} = U\left(oldsymbol{\xi}_{t_{\mathrm{f}}},t_{\mathrm{f}}
ight) - U\left(oldsymbol{\xi}_{t_{\mathrm{o}}},t_{\mathrm{o}}
ight)$$

Stochastic Thermodynamics Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998)

Wiener increment

$$\mathrm{d}\boldsymbol{\xi}_t = -\partial_{\boldsymbol{\xi}_t} U(\boldsymbol{\xi}_t, t) \, \frac{\mathrm{d}t}{\tau} + \sqrt{\frac{2}{\beta\tau}} \mathrm{d}\boldsymbol{\omega}_t$$

Fluctuating heat release during the horizon $[t_o, t_f]$

$$\mathcal{Q}_{t_{\mathrm{f}},t_{\mathrm{o}}} = -\int_{t_{\mathrm{o}}}^{t_{\mathrm{f}}} \mathrm{d}\boldsymbol{\xi}_{t} \stackrel{\diamond}{\cdot} \partial_{\boldsymbol{\xi}_{t}} U(\boldsymbol{\xi}_{t},t)$$

Fluctuating work during the horizon $[t_0, t_f]$

$$W_{t_l,t_o} = \int_{t_o}^{t_l} \mathrm{d}t \,\partial_t U(\xi_t,t)$$

First law of thermodynamics in $[t_o, t_f]$

$$W_{t_{\rm f},t_{\rm o}} - Q_{t_{\rm f},t_{\rm o}} = U(\xi_{t_{\rm f}},t_{\rm f}) - U(\xi_{t_{\rm o}},t_{\rm o})$$

Stochastic Thermodynamics Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998)

Wiener increment

$$d\boldsymbol{\xi}_t = -\partial_{\boldsymbol{\xi}_t} U(\boldsymbol{\xi}_t, t) \frac{dt}{\tau} + \sqrt{\frac{2}{\beta\tau}} d\omega_t$$

Fluctuating heat release during the horizon $[t_0, t_f]$

$$Q_{t_{\rm f},t_{\rm o}} = -\int_{t_{\rm o}}^{t_{\rm f}} \mathrm{d}\boldsymbol{\xi}_t \stackrel{\diamond}{\cdot} \partial_{\boldsymbol{\xi}_t} U(\boldsymbol{\xi}_t,t)$$

Fluctuating work during the horizon $[t_o, t_f]$

$$W_{t_{\rm f},t_{\rm o}} = \int_{t_{\rm o}}^{t_{\rm f}} \mathrm{d}t \,\partial_t U(\boldsymbol{\xi}_t,t)$$

First law of thermodynamics in $[t_0, t_f]$

$$W_{t_{\rm f},t_{\rm o}} - Q_{t_{\rm f},t_{\rm o}} = U\left(\boldsymbol{\xi}_{t_{\rm f}},t_{\rm f}\right) - U\left(\boldsymbol{\xi}_{t_{\rm o}},t_{\rm o}\right)$$

Second law

Entropy production and current velocity

$$\mathbf{E}\mathcal{Q}_{t_{\mathrm{f}},t_{\mathrm{o}}} + \frac{1}{\beta}\mathbf{E}\ln\frac{\mathbf{m}_{\mathrm{o}}(\boldsymbol{\xi}_{t_{\mathrm{o}}})}{\mathbf{m}_{\mathrm{f}}(\boldsymbol{\xi}_{t_{\mathrm{f}}})} = \mathbf{E}\int_{t_{\mathrm{o}}}^{t_{\mathrm{f}}}\frac{\mathrm{d}t}{\tau} \|\boldsymbol{\nu}\|^{2} (\boldsymbol{\xi}_{t},t) \geq 0$$

$$\mathbf{v}(\mathbf{q},t) = -\partial_{\mathbf{q}} \left\{ U(\mathbf{q},t) + \frac{1}{\beta} \ln \frac{(2\pi)^{d/2} \operatorname{m}(\mathbf{q},t)}{\beta^{d/2}} \right\} \equiv -\partial_{\mathbf{q}} (U-S)(\mathbf{q},t)$$

Properties of the current velocity, E. Nelson, "Dynamical Theories of Brownian Motion" 1967

$$\frac{\mathbf{v}(\boldsymbol{q},t)}{\tau} := \lim_{dt \downarrow 0} \mathrm{E}_{\boldsymbol{\xi}_t = \boldsymbol{q}} \frac{\boldsymbol{\xi}_{t+dt} - \boldsymbol{\xi}_{t-dt}}{2 \, \mathrm{d}t}$$

$$\tau \,\partial_t \mathbf{m} + \partial_q \cdot \mathbf{m} \,\mathbf{v} = \mathbf{0}$$

Second law

Entropy production and current velocity

$$\mathbf{E}\mathcal{Q}_{t_{\mathrm{f}},t_{\mathrm{o}}} + \frac{1}{\beta}\mathbf{E}\ln\frac{\mathbf{m}_{\mathrm{o}}(\boldsymbol{\xi}_{t_{\mathrm{o}}})}{\mathbf{m}_{\mathrm{f}}(\boldsymbol{\xi}_{t_{\mathrm{f}}})} = \mathbf{E}\int_{t_{\mathrm{o}}}^{t_{\mathrm{f}}}\frac{\mathrm{d}t}{\tau} \|\boldsymbol{\nu}\|^{2} (\boldsymbol{\xi}_{t},t) \geq 0$$

$$\boldsymbol{\nu}(\boldsymbol{q},t) = -\partial_{\boldsymbol{q}} \left\{ U(\boldsymbol{q},t) + \frac{1}{\beta} \ln \frac{(2\pi)^{d/2} \operatorname{m}(\boldsymbol{q},t)}{\beta^{d/2}} \right\} \equiv -\partial_{\boldsymbol{q}} (U-S)(\boldsymbol{q},t)$$

Properties of the current velocity, E. Nelson, "Dynamical Theories of Brownian Motion" 1967

$$\frac{\mathbf{v}(\boldsymbol{q},t)}{\tau} := \lim_{dt \downarrow 0} \mathrm{E}_{\boldsymbol{\xi}_t = \boldsymbol{q}} \frac{\boldsymbol{\xi}_{t+\mathrm{d}t} - \boldsymbol{\xi}_{t-\mathrm{d}t}}{2\,\mathrm{d}t}$$

$$\tau \,\partial_t \mathbf{m} + \partial_q \cdot \mathbf{m} \,\mathbf{v} = \mathbf{0}$$

Second law

Entropy production and current velocity

$$EQ_{t_{\mathrm{f}},t_{\mathrm{o}}} + \frac{1}{\beta} E \ln \frac{\mathrm{m}_{\mathrm{o}}(\boldsymbol{\xi}_{t_{\mathrm{o}}})}{\mathrm{m}_{\mathrm{f}}(\boldsymbol{\xi}_{t_{\mathrm{f}}})} = E \int_{t_{\mathrm{o}}}^{t_{\mathrm{f}}} \frac{\mathrm{d}t}{\tau} \| \boldsymbol{\nu} \|^{2} (\boldsymbol{\xi}_{t}, t) \ge 0$$

$$\mathbf{v}(\mathbf{q},t) = -\partial_{\mathbf{q}} \left\{ U(\mathbf{q},t) + \frac{1}{\beta} \ln \frac{(2\pi)^{d/2} \operatorname{m}(\mathbf{q},t)}{\beta^{d/2}} \right\} \equiv -\partial_{\mathbf{q}} (U-S)(\mathbf{q},t)$$

Properties of the current velocity, E. Nelson, "Dynamical Theories of Brownian Motion" 1967

$$\frac{\mathbf{v}(\mathbf{q},t)}{\tau} := \lim_{\mathrm{d}t \downarrow 0} \mathrm{E}_{\boldsymbol{\xi}_t = \boldsymbol{q}} \frac{\boldsymbol{\xi}_{t+\mathrm{d}t} - \boldsymbol{\xi}_{t-\mathrm{d}t}}{2\,\mathrm{d}t}$$

$$\tau \,\partial_t \mathbf{m} + \partial_q \cdot \mathbf{m} \, \mathbf{v} = 0$$

Minimal entropy production in a finite time transition

$$\mathcal{E} = \beta \int_{t_0}^{t_f} \frac{dt}{\tau} \int_{\mathbb{R}^{2d}} \mathrm{d}^{2d} x \, \mathrm{m}(\boldsymbol{x}, t) \parallel \boldsymbol{v} \parallel^2 (\boldsymbol{x}, t)$$

- *v* is the control protocol.
- *E* is coercive in *v*: current velocity kinetic energy.
- Admissible protocols: we restrict to differentiable (viscosity sense) v
- Optimal control is local and deterministic: Hamilton–Jacobi equations.

Monge-Ampère-Kantorovich equations

$$\partial_t (U - S) - \frac{\parallel \partial_q (U - S) \parallel^2}{2\tau} = 0$$

$$\partial_t \mathbf{m} - \frac{1}{\tau} \partial_q \cdot [\mathbf{m} \partial_q (U - S)] = 0$$

$$\mathbf{m}(q, t_0) = \mathbf{m}_0(q) \qquad \& \qquad \mathbf{m}(q, t_f) = \mathbf{m}_f(q)$$

Minimal entropy production in a finite time transition

$$\mathcal{E} = \beta \, \int_{t_0}^{t_{\mathrm{f}}} \frac{\mathrm{d}t}{\tau} \, \int_{\mathbb{R}^{2d}} \mathrm{d}^{2d} x \, \mathrm{m}(\boldsymbol{x}, t) \parallel \boldsymbol{v} \parallel^2 (\boldsymbol{x}, t)$$

- *v* is the control protocol.
- *E* is coercive in *v*: current velocity kinetic energy.
- Admissible protocols: we restrict to differentiable (viscosity sense) v
- Optimal control is local and deterministic: Hamilton–Jacobi equations.

$$\partial_t (U - S) - \frac{\|\partial_q (U - S)\|^2}{2\tau} = 0$$

$$\partial_t \mathbf{m} - \frac{1}{\tau} \partial_q \cdot [\mathbf{m} \partial_q (U - S)] = 0$$

$$\mathbf{m}(q, t_0) = \mathbf{m}_0(q) \qquad \& \qquad \mathbf{m}(q, t_f) = \mathbf{m}_f(q)$$

Minimal entropy production in a finite time transition

$$\mathcal{E} = \beta \, \int_{t_0}^{t_{\mathrm{f}}} \frac{\mathrm{d}t}{\tau} \, \int_{\mathbb{R}^{2d}} \mathrm{d}^{2d} x \, \mathrm{m}(\boldsymbol{x}, t) \parallel \boldsymbol{v} \parallel^2 (\boldsymbol{x}, t)$$

- *v* is the control protocol.
- *E* is coercive in *v*: current velocity kinetic energy.
- Admissible protocols: we restrict to differentiable (viscosity sense) v
- Optimal control is local and deterministic: Hamilton–Jacobi equations.

Monge–Ampère–Kantorovich equations

$$\partial_t (U - S) - \frac{\|\partial_q (U - S)\|^2}{2\tau} = 0$$

$$\partial_t m - \frac{1}{\tau} \partial_q \cdot [m \partial_q (U - S)] = 0$$

$$m(q, t_o) = m_o(q) \qquad \& \qquad m(q, t_f) = m_f(q)$$

Previuosly encountered in optimal mass transport:

Frisch et al, Nature 417, 260 (2002)

Brenier et al, MNRAS 346, 501 (2003)

Villani, "Optimal transport: old and new", (2009)

• Cassical physical systems obey Newton's law.

- Langevin–Kramers dynamics: thermal stirring coupled to momentum dynamics.
- How does the symplectic structure affect the selection of the optimal control?

- Cassical physical systems obey Newton's law.
- Langevin–Kramers dynamics: thermal stirring coupled to momentum dynamics.
- How does the symplectic structure affect the selection of the optimal control?

- Cassical physical systems obey Newton's law.
- Langevin–Kramers dynamics: thermal stirring coupled to momentum dynamics.
- How does the symplectic structure affect the selection of the optimal control?

Langevin–Kramers "metriplectic" stochastic dynamics

$$H: \mathbb{R}^{2d} \times \mathbb{R}_{+} \mapsto \mathbb{R}$$
$$d\chi_{t} = (\mathsf{J} - \mathsf{G}) \cdot \partial_{\chi_{t}} H \frac{\mathrm{d}t}{\tau} + \sqrt{\frac{2}{\beta \tau}} \,\mathsf{G}^{1/2} \cdot \mathrm{d}\omega_{t}$$
$$\mathsf{J} = \begin{bmatrix} \mathsf{0} & \mathsf{1}_{d} \\ -\mathsf{1}_{d} & \mathsf{0} \end{bmatrix} \qquad \qquad \mathsf{G} = \begin{bmatrix} \mathsf{0} & \mathsf{0} \\ \mathsf{0} & \mathsf{1}_{d} \end{bmatrix}$$

Scalar generator of the process $oldsymbol{\chi}_t\mapstooldsymbol{x}=[oldsymbol{q}\,,oldsymbol{p}]^\dagger\in\mathbb{R}^{2d}$ with $oldsymbol{q}\,,oldsymbol{p}\in\mathbb{R}^d$

$$(\mathfrak{L}f)(\mathbf{x},t) = \left\{ \underbrace{(\partial_{\mathbf{x}}H) \cdot \mathsf{J}^{\dagger} \cdot \partial_{\mathbf{x}}}_{\text{Symplectic structure}} \underbrace{-(\partial_{\mathbf{x}}H) \cdot \mathsf{G} \cdot \partial_{\mathbf{x}} + \frac{1}{\beta} \,\mathsf{G} : \partial_{\mathbf{x}} \otimes \partial_{\mathbf{x}}}_{\sum_{i=1}^{d} [(\partial_{p_{i}}H)\partial_{q_{i}} - (\partial_{q_{i}}H)\partial_{p_{i}}]} \underbrace{-(\partial_{\mathbf{x}}H) \cdot \mathsf{G} \cdot \partial_{\mathbf{x}} + \frac{1}{\beta} \,\mathsf{G} : \partial_{\mathbf{x}} \otimes \partial_{\mathbf{x}}}_{\sum_{i=1}^{d} [(\partial_{p_{i}}H)\partial_{p_{i}} + \frac{1}{\beta} \partial_{p_{i}}^{2}]} \right\} f(\mathbf{x},t)$$

Thermodynamics

Natural involution associated to time reversal $[q,p] \mapsto [q,-p]$

First law

$$\begin{split} W_{t_{\rm f},t_{\rm o}} &= \int_{t_{\rm o}}^{t_{\rm f}} dt \, \partial_t H(\boldsymbol{\xi}_t,t) \\ \mathcal{Q}_{t_{\rm f},t_{\rm o}} &= -\int_{t_{\rm o}}^{t_{\rm f}} d\chi_t \stackrel{\diamond}{\cdot} \partial_{\chi_t} H(\boldsymbol{\xi}_t,t) \end{split} \implies \qquad W_{t_{\rm f},t_{\rm o}} - \mathcal{Q}_{t_{\rm f},t_{\rm o}} = H(\boldsymbol{\xi}_{t_{\rm f}},t_{\rm f}) - H(\boldsymbol{\xi}_{t_{\rm o}},t_{\rm o}) \end{split}$$

Second law

$$\mathbb{E}Q_{t_{\mathrm{f}},t_{\mathrm{o}}} + \frac{1}{\beta}\mathbb{E}\ln\frac{\mathbb{m}_{\mathrm{o}}(\boldsymbol{\chi}_{t_{\mathrm{o}}})}{\mathbb{m}_{\mathrm{f}}(\boldsymbol{\chi}_{t_{\mathrm{f}}})} = \mathbb{E}\int_{t_{\mathrm{o}}}^{t_{\mathrm{f}}}\frac{\mathrm{d}t}{\tau} \parallel \mathbf{G} \cdot \partial_{\boldsymbol{\chi}_{t}}(H-S) \parallel^{2} (\boldsymbol{\chi}_{t},t)$$

UNIVERSITY OF HELSINK

Thermodynamics

Natural involution associated to time reversal $[q,p] \mapsto [q,-p]$

First law

$$\begin{split} W_{t_{\rm f},t_{\rm o}} &= \int_{t_{\rm o}}^{t_{\rm f}} \mathrm{d}t \,\partial_t H(\boldsymbol{\xi}_t,t) \\ Q_{t_{\rm f},t_{\rm o}} &= -\int_{t_{\rm o}}^{t_{\rm f}} \mathrm{d}\chi_t \stackrel{\diamond}{\cdot} \partial_{\boldsymbol{\chi}_t} H(\boldsymbol{\xi}_t,t) \end{split} \Rightarrow \qquad W_{t_{\rm f},t_{\rm o}} - Q_{t_{\rm f},t_{\rm o}} = H(\boldsymbol{\xi}_{t_{\rm f}},t_{\rm f}) - H(\boldsymbol{\xi}_{t_{\rm o}},t_{\rm o}) \end{split}$$

Second law

$$\mathbb{E}Q_{t_{\mathrm{f}},t_{\mathrm{o}}} + \frac{1}{\beta}\mathbb{E}\ln\frac{\mathbb{m}_{\mathrm{o}}(\boldsymbol{\chi}_{t_{\mathrm{o}}})}{\mathbb{m}_{\mathrm{f}}(\boldsymbol{\chi}_{t_{\mathrm{f}}})} = \mathbb{E}\int_{t_{\mathrm{o}}}^{t_{\mathrm{f}}}\frac{\mathrm{d}t}{\tau} \parallel \mathbf{G} \cdot \partial_{\boldsymbol{\chi}_{t}}(H-S) \parallel^{2} (\boldsymbol{\chi}_{t},t)$$

UNIVERSITY OF HELSINKI

Thermodynamics

Natural involution associated to time reversal $[q,p] \mapsto [q,-p]$

First law

$$\begin{split} W_{t_{\rm f},t_{\rm o}} &= \int_{t_{\rm o}}^{t_{\rm f}} \mathrm{d}t \,\partial_t H(\boldsymbol{\xi}_t,t) \\ Q_{t_{\rm f},t_{\rm o}} &= -\int_{t_{\rm o}}^{t_{\rm f}} \mathrm{d}\chi_t \stackrel{\diamond}{\cdot} \partial_{\boldsymbol{\chi}_t} H(\boldsymbol{\xi}_t,t) \end{split} \Rightarrow \qquad W_{t_{\rm f},t_{\rm o}} - Q_{t_{\rm f},t_{\rm o}} = H(\boldsymbol{\xi}_{t_{\rm f}},t_{\rm f}) - H(\boldsymbol{\xi}_{t_{\rm o}},t_{\rm o}) \end{split}$$

Second law

$$\mathbf{E}\mathcal{Q}_{t_{\mathrm{f}},t_{\mathrm{o}}} + \frac{1}{\beta} \mathbf{E} \ln \frac{\mathbf{m}_{\mathrm{o}}(\boldsymbol{\chi}_{t_{\mathrm{o}}})}{\mathbf{m}_{\mathrm{f}}(\boldsymbol{\chi}_{t_{\mathrm{f}}})} = \mathbf{E} \int_{t_{\mathrm{o}}}^{t_{\mathrm{f}}} \frac{\mathrm{d}t}{\tau} \parallel \mathbf{G} \cdot \partial_{\boldsymbol{\chi}_{t}}(H-S) \parallel^{2} (\boldsymbol{\chi}_{t},t)$$

UNIVERSITY OF HELSINK

Entropy production as utility functional

Relation with non-equilibrium Helmholtz energy

$$A(\mathbf{x},t) = (H-S)(\mathbf{x},t) = H(\mathbf{x},t) + \frac{1}{\beta} \ln \frac{(2\pi)^d \operatorname{m}(\mathbf{x},t)}{\beta^d}$$
$$\mathcal{E} = \beta \int_{t_0}^{t_f} \frac{\mathrm{d}t}{\tau} \int_{\mathbb{R}^{2d}} \mathrm{d}^{2d} x \operatorname{m}(\mathbf{x},t) \parallel \mathbf{G} \cdot \partial_{\mathbf{x}} A \parallel^2 (\mathbf{x},t)$$

Relation with the current velocity

$$\mathbf{v}(\mathbf{x},t) = \mathsf{J} \cdot \partial_{\mathbf{x}} H(\mathbf{x},t) - \mathsf{G} \cdot \partial_{\mathbf{x}} (H-S)(\mathbf{x},t)$$
$$\partial_{\mathbf{x}} \cdot \mathbf{v} = -\mathsf{G} : \partial_{\mathbf{x}} \otimes \partial_{\mathbf{x}} (H-S)$$

Symplectic structure \Rightarrow incompressible component

Non explicitly coercive: no penalty on large $\partial_q A$ $\mathbf{G} \cdot \partial_{\mathbf{x}} A \equiv \begin{bmatrix} 0\\ \partial_p A \end{bmatrix}$

Entropy production as utility functional

Relation with non-equilibrium Helmholtz energy

$$A(\mathbf{x},t) = (H-S)(\mathbf{x},t) = H(\mathbf{x},t) + \frac{1}{\beta} \ln \frac{(2\pi)^d \operatorname{m}(\mathbf{x},t)}{\beta^d}$$
$$\mathcal{E} = \beta \int_{t_0}^{t_f} \frac{\mathrm{d}t}{\tau} \int_{\mathbb{R}^{2d}} \mathrm{d}^{2d} x \operatorname{m}(\mathbf{x},t) \parallel \mathbf{G} \cdot \partial_{\mathbf{x}} A \parallel^2 (\mathbf{x},t)$$

Relation with the current velocity

$$\mathbf{v}(\mathbf{x},t) = \mathsf{J} \cdot \partial_{\mathbf{x}} H(\mathbf{x},t) - \mathsf{G} \cdot \partial_{\mathbf{x}} (H-S)(\mathbf{x},t)$$
$$\partial_{\mathbf{x}} \cdot \mathbf{v} = -\mathsf{G} : \partial_{\mathbf{x}} \otimes \partial_{\mathbf{x}} (H-S)$$

Symplectic structure \Rightarrow incompressible component

Non explicitly coercive: no penalty on large $\partial_q A$ $\mathbf{G} \cdot \partial_x A \equiv \begin{bmatrix} 0\\ \partial_p A \end{bmatrix}$

Entropy production as utility functional

Relation with non-equilibrium Helmholtz energy

$$A(\mathbf{x},t) = (H-S)(\mathbf{x},t) = H(\mathbf{x},t) + \frac{1}{\beta} \ln \frac{(2\pi)^d \operatorname{m}(\mathbf{x},t)}{\beta^d}$$
$$\mathcal{E} = \beta \int_{t_0}^{t_f} \frac{\mathrm{d}t}{\tau} \int_{\mathbb{R}^{2d}} \mathrm{d}^{2d} x \operatorname{m}(\mathbf{x},t) \parallel \mathbf{G} \cdot \partial_{\mathbf{x}} A \parallel^2 (\mathbf{x},t)$$

Relation with the current velocity

$$\mathbf{v}(\mathbf{x},t) = \mathsf{J} \cdot \partial_{\mathbf{x}} H(\mathbf{x},t) - \mathsf{G} \cdot \partial_{\mathbf{x}} (H-S)(\mathbf{x},t)$$
$$\partial_{\mathbf{x}} \cdot \mathbf{v} = -\mathsf{G} : \partial_{\mathbf{x}} \otimes \partial_{\mathbf{x}} (H-S)$$

Symplectic structure \Rightarrow incompressible component

Non explicitly coercive: no penalty on large $\partial_q A$

$$\mathbf{G} \cdot \partial_{\mathbf{x}} A \equiv \begin{bmatrix} 0\\ \partial_{\mathbf{p}} A \end{bmatrix}$$

Difficulties

Absence of explicit coercivity on all degrees of freedom

1 We require smooth evolution between the initial m_o and final m_f density

- We restrict admissible Hamiltonian to $C^{(2,1)}(\mathbb{R}^{2d},\mathbb{R}_+) \cap \mathbb{L}^2(\mathbb{R}^{2d}, \operatorname{m} d^{2d}x)$
- Entropy production depends only on the compressible component of the current velocity
 - ⇒ control problem does not reduce to a deterministic one: *H* governs both the compressible and incompressible components.
 - Imposing kinetic+potential form of *H* leads to singular control.
- Presence of incompressible component in the control
 - \Rightarrow Non-local constraint on the dynamics

Difficulties

- Absence of explicit coercivity on all degrees of freedom
 - (1) We require smooth evolution between the initial m_o and final m_f density
 - 2 We restrict admissible Hamiltonian to $C^{(2,1)}(\mathbb{R}^{2d},\mathbb{R}_+) \cap \mathbb{L}^2(\mathbb{R}^{2d}, \operatorname{m} d^{2d}x)$
- Entropy production depends only on the compressible component of the current velocity
 - \Rightarrow control problem does not reduce to a deterministic one: *H* governs both the compressible and incompressible components.
 - Imposing kinetic+potential form of *H* leads to singular control.
- Presence of incompressible component in the control

Difficulties

- Absence of explicit coercivity on all degrees of freedom
 - 1 We require smooth evolution between the initial mo and final mf density
 - 2 We restrict admissible Hamiltonian to $C^{(2,1)}(\mathbb{R}^{2d},\mathbb{R}_+) \cap \mathbb{L}^2(\mathbb{R}^{2d}, \operatorname{m} d^{2d}x)$
- Entropy production depends only on the compressible component of the current velocity
 - \Rightarrow control problem does not reduce to a deterministic one: *H* governs both the compressible and incompressible components.
 - Imposing kinetic+potential form of *H* leads to singular control.
- Presence of incompressible component in the control
 - \Rightarrow Non-local constraint on the dynamics

Example: incompressible Euler equation Bloch et al, IEEE Decision & Control

Proceedings, (2000)

$$\begin{aligned} \mathcal{A} &= \int_{t_{o}}^{t_{f}} \mathrm{d}t \, \int_{\mathbb{R}^{d}} \mathrm{d}^{d}x \, \left\{ \parallel \boldsymbol{\nu}(\boldsymbol{x},t) \parallel^{2} + K(\boldsymbol{x},t) \partial_{\boldsymbol{x}} \boldsymbol{\nu}(\boldsymbol{x},t) \right\} \\ &+ \int_{t_{o}}^{t_{f}} \mathrm{d}t \, \int_{\mathbb{R}^{d}} \mathrm{d}^{d}x \, \boldsymbol{\Phi}_{t}(\boldsymbol{x},t_{o}) \cdot \left(\boldsymbol{\nu}(\boldsymbol{X}_{t}(\boldsymbol{x},t_{o}),t) - \dot{\boldsymbol{X}}_{t}(\boldsymbol{x},t_{o}) \right) \end{aligned}$$

Variations for $X'_{t_0} = X'_{t_f}$

.

K – variation	$\partial_{\mathbf{x}} \cdot \mathbf{v} = 0$
Φ – variation	$\dot{X}_t - \mathbf{v}(X_t, t) = 0$
X_t – variation	$\dot{\boldsymbol{\Phi}}_t(\boldsymbol{x},t_{\mathrm{o}}) + \boldsymbol{\Phi}_t(\boldsymbol{x},t_{\mathrm{o}}) \cdot (\partial_{\boldsymbol{X}_t} \otimes \boldsymbol{\nu})(\boldsymbol{X}_t(\boldsymbol{x},t_{\mathrm{o}}),t) = 0$
v – variation	$2\boldsymbol{v}(\boldsymbol{x},t) + \boldsymbol{\Phi}_t(\boldsymbol{X}_t^{-1}(\boldsymbol{x},t_{\mathrm{o}}),t) - \partial_{\boldsymbol{x}}K(\boldsymbol{x},t) = 0$

Eulerian Lagrange multiplier: $w(\mathbf{x}, t) = \Phi_t(\mathbf{X}_t^{-1}(\mathbf{x}, t_o), t)$ $\partial_t \mathbf{w} + \mathbf{v} \cdot \partial_x \mathbf{w} + (\partial_x \otimes \mathbf{v}) \cdot \mathbf{w} = 0$

 $\Rightarrow \partial_t \mathbf{v} + \mathbf{v} \cdot \partial_{\mathbf{x}} = -\partial_{\mathbf{x}} \wp(K)$

Example: incompressible Euler equation Bloch et al, IEEE Decision & Control

Proceedings, (2000)

$$\begin{aligned} \mathcal{A} &= \int_{t_{o}}^{t_{f}} \mathrm{d}t \, \int_{\mathbb{R}^{d}} \mathrm{d}^{d}x \, \left\{ \parallel \boldsymbol{\nu}(\boldsymbol{x},t) \parallel^{2} + K(\boldsymbol{x},t) \partial_{\boldsymbol{x}} \boldsymbol{\nu}(\boldsymbol{x},t) \right\} \\ &+ \int_{t_{o}}^{t_{f}} \mathrm{d}t \, \int_{\mathbb{R}^{d}} \mathrm{d}^{d}x \, \boldsymbol{\Phi}_{t}(\boldsymbol{x},t_{o}) \cdot \left(\boldsymbol{\nu}(\boldsymbol{X}_{t}(\boldsymbol{x},t_{o}),t) - \dot{\boldsymbol{X}}_{t}(\boldsymbol{x},t_{o}) \right) \end{aligned}$$

Variations for $X'_{t_0} = X'_{t_f}$

.

K – variation	$\partial_{\mathbf{x}} \cdot \mathbf{v} = 0$
Φ – variation	$\dot{X}_t - \mathbf{v}(X_t, t) = 0$
X_t – variation	$\dot{\boldsymbol{\Phi}}_t(\boldsymbol{x},t_{\mathrm{o}}) + \boldsymbol{\Phi}_t(\boldsymbol{x},t_{\mathrm{o}}) \cdot (\partial_{\boldsymbol{X}_t} \otimes \boldsymbol{\nu})(\boldsymbol{X}_t(\boldsymbol{x},t_{\mathrm{o}}),t) = 0$
v – variation	$2\boldsymbol{\nu}(\boldsymbol{x},t) + \boldsymbol{\Phi}_t(\boldsymbol{X}_t^{-1}(\boldsymbol{x},t_{\mathrm{o}}),t) - \partial_{\boldsymbol{x}}K(\boldsymbol{x},t) = 0$

Eulerian Lagrange multiplier: $w(\mathbf{x}, t) = \Phi_t(\mathbf{X}_t^{-1}(\mathbf{x}, t_o), t)$ $\partial_t \mathbf{w} + \mathbf{v} \cdot \partial_{\mathbf{x}} \mathbf{w} + (\partial_{\mathbf{x}} \otimes \mathbf{v}) \cdot \mathbf{w} = 0$ $\Rightarrow \partial_t \mathbf{v} + \mathbf{v} \cdot \partial_{\mathbf{x}} = -\partial_{\mathbf{x}} \wp(K)$

Pontryagin-Bismut variational approach

$$\begin{aligned} \mathcal{A}(\mathsf{m}, V, \boldsymbol{j}, \boldsymbol{H}, \boldsymbol{X}, \boldsymbol{\Phi}) \\ &= \int_{t_{o}}^{t_{f}} \frac{\mathrm{d}t}{\tau} \int_{\mathbb{R}^{2d}} \mathrm{d}^{2d} x \left\{ \mathsf{m} \parallel \partial_{\boldsymbol{x}} (\boldsymbol{H} - \boldsymbol{S}) \parallel_{\mathbf{G}}^{2} - V \left(\tau \, \partial_{t} - \mathfrak{L}^{\dagger} \right) \mathsf{m} \right\} \\ &+ \int_{\mathbf{R}^{2d}} \mathrm{d}^{2d} x_{o} \, \mathsf{m}_{o}(\boldsymbol{x}_{o}) \, \mathsf{E}_{\boldsymbol{X}_{t_{o}} = \boldsymbol{x}_{o}}^{(\omega)} \int_{t_{o}}^{t_{f}} \boldsymbol{\Phi}_{t} \cdot \left\{ \mathrm{d}\boldsymbol{X}_{t} - \frac{\mathrm{d}t}{\tau} \left(\mathsf{J} - \mathsf{G} \right) \cdot \partial_{\boldsymbol{X}_{t}} \boldsymbol{H} \right\} \\ &+ \boldsymbol{\jmath} \cdot \int_{\mathbf{R}^{2d}} \mathrm{d}^{2d} x \, \left\{ \mathsf{m}_{f}(\boldsymbol{x}) \, \boldsymbol{x} - \mathsf{m}_{o}(\boldsymbol{x}) \, \mathsf{E}_{\boldsymbol{X}_{t_{o}} = \boldsymbol{x}}^{(\omega)} \boldsymbol{X}_{t_{f}} \right\} \end{aligned}$$

with the auxiliary constraint

$$\mathrm{d}\boldsymbol{\Phi}_t = \boldsymbol{u}\,\mathrm{d}t + \sqrt{\frac{2}{\beta\,\tau}}\mathsf{Y}\cdot\mathrm{d}\boldsymbol{\omega}_t$$

and

$$X'_{t_{\mathrm{o}}} = X'_{t_{\mathrm{f}}} \stackrel{\mathsf{in some sense}}{=} 0$$

Numquam ponenda est pluralitas sine necessitate

William of Ockham, Quaestiones et decisiones in quattuor libros Sententiarum Petri Lombardi

Reduction Ansatz

$$\Phi_t = 0$$

Equivalent Pontryagin functional

$$\mathcal{A}(\mathsf{m}, V, \boldsymbol{\jmath}, H) = \int_{\mathbb{R}^{2d}} \mathrm{d}^{2d} x \left[\mathsf{m}_{\mathsf{o}}(\boldsymbol{x}) V(\boldsymbol{x}, t_{\mathsf{o}}) - \mathsf{m}_{\mathsf{f}}(\boldsymbol{x}) V(\boldsymbol{x}, t_{\mathsf{f}})\right] \\ + \int_{t_{\mathsf{o}}}^{t_{\mathsf{f}}} \frac{\mathrm{d}t}{\tau} \int_{\mathbb{R}^{2d}} \mathrm{d}^{2d} x \, \mathsf{m}(\boldsymbol{x}, t) \left\{ \| \mathbf{G} \cdot \partial_{\boldsymbol{x}}(H - S) \|^{2} + (\tau \, \partial_{t} + \mathfrak{L}) V \right\}(\boldsymbol{x}, t)$$

Numquam ponenda est pluralitas sine necessitate

William of Ockham, Quaestiones et decisiones in quattuor libros Sententiarum Petri Lombardi

Reduction Ansatz

$$\Phi_t = 0$$

Equivalent Pontryagin functional

$$\mathcal{A}(\mathsf{m}, V, \boldsymbol{\jmath}, H) = \int_{\mathbb{R}^{2d}} \mathrm{d}^{2d} x \left[\mathsf{m}_{\mathsf{o}}(\boldsymbol{x}) V(\boldsymbol{x}, t_{\mathsf{o}}) - \mathsf{m}_{\mathsf{f}}(\boldsymbol{x}) V(\boldsymbol{x}, t_{\mathsf{f}})\right] \\ + \int_{t_{\mathsf{o}}}^{t_{\mathsf{f}}} \frac{\mathrm{d}t}{\tau} \int_{\mathbb{R}^{2d}} \mathrm{d}^{2d} x \, \mathsf{m}(\boldsymbol{x}, t) \left\{ \| \mathbf{G} \cdot \partial_{\boldsymbol{x}}(H - S) \|^{2} + (\tau \, \partial_{t} + \mathfrak{L}) V \right\}(\boldsymbol{x}, t)$$

Guerra & Morato, Phys. Rev. D, 27, 1774-1786, (1983)

P. Muratore-Ginanneschi (Helsinki Univ.) Extremals of entropy production by "Langevin–Kramers

Extremal equations

$$\mathfrak{D}^{(S)} = -\beta \left(\partial_{\mathbf{x}} S \right) \cdot \mathbf{G} \cdot \partial_{\mathbf{x}} + \mathbf{G} : \partial_{\mathbf{x}} \otimes \partial_{\mathbf{x}}$$

$$(S, V)_{\rm P} + \frac{1}{\beta} \mathfrak{D}^{(S)}(V - 2A) = 0 \qquad \text{"non- local constraint"}$$
$$\tau \,\partial_t V + (A, V)_{\rm P} - \partial_x A \cdot \mathbf{G} \cdot \partial_x V + \| \mathbf{G} \cdot \partial_x A \|^2 = 0$$
$$\tau \,\partial_t S + (A, S)_{\rm P} + \frac{1}{\beta} \mathfrak{D}^{(S)} A = 0$$

Non coercivity: extremal independent of $\partial_q A$

$$\sum_{i=1}^{d} \left\{ (\partial_{p_i} S) \partial_{q_i} V - (\partial_{q_i} S) \partial_{p_i} V - \left[(\partial_{p_i} S) \partial_{p_i} - \frac{1}{\beta} \partial_{p_i} \right] (V - 2A) \right\} = 0$$

Extremal equations

 $\mathfrak{D}^{(S)} = -\beta \left(\partial_x S\right) \cdot \mathbf{G} \cdot \partial_x + \mathbf{G} : \partial_x \otimes \partial_x \text{ Langevin-Smoluchowski case}$

 $V - 2A = 0 \qquad \text{"local constraint"}$ $\tau \partial_t V \qquad -\partial_x A \cdot \mathbf{G} \cdot \partial_x V + \| \mathbf{G} \cdot \partial_x A \|^2 = 0$ $\tau \partial_t S \qquad + \frac{1}{\beta} \mathfrak{D}^{(S)} A = 0$

Non coercivity: extremal independent of $\partial_q A$

$$\sum_{i=1}^{d} \left\{ (\partial_{p_i} S) \partial_{q_i} V - (\partial_{q_i} S) \partial_{p_i} V - \left[(\partial_{p_i} S) \partial_{p_i} - \frac{1}{\beta} \partial_{p_i} \right] (V - 2A) \right\} = 0$$

Extremal equations

$$\mathfrak{D}^{(S)} = -\beta \left(\partial_{\mathbf{x}} S \right) \cdot \mathbf{G} \cdot \partial_{\mathbf{x}} + \mathbf{G} : \partial_{\mathbf{x}} \otimes \partial_{\mathbf{x}}$$

$$(S, V)_{\rm P} + \frac{1}{\beta} \mathfrak{D}^{(S)}(V - 2A) = 0 \qquad \text{"non- local constraint"}$$
$$\tau \,\partial_t V + (A, V)_{\rm P} - \partial_x A \cdot \mathbf{G} \cdot \partial_x V + \| \mathbf{G} \cdot \partial_x A \|^2 = 0$$
$$\tau \,\partial_t S + (A, S)_{\rm P} + \frac{1}{\beta} \mathfrak{D}^{(S)} A = 0$$

Non coercivity: extremal independent of $\partial_q A$

$$\sum_{i=1}^{d} \left\{ (\partial_{p_i} S) \partial_{q_i} V - (\partial_{q_i} S) \partial_{p_i} V - \left[(\partial_{p_i} S) \partial_{p_i} - \frac{1}{\beta} \partial_{p_i} \right] (V - 2A) \right\} = 0$$

UNIVERSITY OF HELSING

An explicitly solvable case

Boundary conditions

$$m_{i}(\boldsymbol{x}) = rac{eta}{2\pi}e^{-eta\,S_{i}(\boldsymbol{x})} \hspace{1cm} \mathbf{i} = \mathbf{0},\mathbf{f}$$

with

$$\begin{split} S_{i}(p,q) &= \frac{(p-\mu_{p;i})^{2}}{2\,\sigma_{p;i}^{2}\,\cos^{2}\theta_{i}} + \frac{(q-\mu_{q;i})^{2}}{2\,\sigma_{q;i}^{2}\,\cos^{2}\theta_{i}} \\ &- \tanh\theta_{i}\,\frac{(p-\mu_{p;i})(q-\mu_{q;i})}{\sigma_{p;i}\,\sigma_{q;i}\,\cos\theta_{i}} - \frac{1}{\beta}\ln\left(\frac{1}{2\,\pi\,\sigma_{p;i}\,\sigma_{q;i}\,\cos\theta_{i}}\right) \end{split}$$

Decorrelated zero mean statistics of the initial state

$$\mu_{p;o} = \mu_{p;o} = \theta_o = 0$$

UNIVERSITY OF HELSINK

Solution by quadratic Ansätze

The extremal equations foliate into a solvable hierarchy of DE's

$$y_t := \frac{\partial_p^2 A}{\partial_p^2 S} \quad \text{resolve the hierarchy for 2nd order monomials}$$

$$\ddot{y}_t \dot{y}_t^2 - 2 \dot{y}_t \ddot{y}_t \quad \ddot{y}_t + \ddot{y}_t^3 = 0 \\ \Rightarrow y_t = \tau \Omega \{ c_0 + c_1 \Omega t + c_1 [\sin (\Omega t + \varphi) - \sin \varphi] \}$$

Family of extremals parametrized by $\partial_p \partial_q S$ and $\mu_{p,t}$

$$\begin{split} \partial_p^2 S &= \frac{16\cos^2\frac{\varphi}{2}\cos^2\frac{\Omega t + \varphi}{2}}{\left\{4\,\sigma_{p;o}\cos^2\frac{\varphi}{2} + \sigma_{q;o}\left[\Omega t + \sin(\Omega t + \varphi) - \sin\varphi\right]\right\}^2} \ge 0\\ \partial_q^2 S &= \frac{\cos^2\frac{\varphi}{2}}{\sigma_{q;o}^2\cos^2\frac{\Omega t + \varphi}{2}} + \frac{\left(\partial_p\partial_q S\right)^2}{\partial_p^2 S} \ge 0\\ \mu_{q;t} &= \frac{\mu_{\rm f} t}{t_{\rm f}} \end{split}$$

Solution by quadratic Ansätze

The extremal equations foliate into a solvable hierarchy of DE's

$$y_t := \frac{\partial_p^2 A}{\partial_p^2 S} \quad \text{resolve the hierarchy for 2nd order monomials}$$

$$\ddot{y}_t \dot{y}_t^2 - 2 \dot{y}_t \ddot{y}_t \ddot{y}_t + \ddot{y}_t^3 = 0 \\ \Rightarrow y_t = \tau \Omega \{ c_0 + c_1 \Omega t + c_1 [\sin (\Omega t + \varphi) - \sin \varphi] \}$$

Family of extremals parametrized by $\partial_p \partial_q S$ and $\mu_{p,t}$

$$\begin{split} \partial_p^2 S &= \frac{16\cos^2\frac{\varphi}{2}\cos^2\frac{\Omega t + \varphi}{2}}{\left\{4\,\sigma_{p;o}\cos^2\frac{\varphi}{2} + \sigma_{q;o}\left[\Omega t + \sin(\Omega t + \varphi) - \sin\varphi\right]\right\}^2} \ge 0\\ \partial_q^2 S &= \frac{\cos^2\frac{\varphi}{2}}{\sigma_{q;o}^2\cos^2\frac{\Omega t + \varphi}{2}} + \frac{\left(\partial_p\partial_q S\right)^2}{\partial_p^2 S} \ge 0\\ \mu_{q;t} &= \frac{\mu_{\rm f} t}{t_{\rm f}} \end{split}$$

Exact value of the entropy production

$$\frac{\mathcal{E}_{t_{\rm f},t_{\rm o}}}{\beta} = \frac{\mu_{q;{\rm f}}^2 \tau}{t_{\rm f}} + \frac{\sigma_{q;{\rm o}}^2 \Omega^2 \tau t_{\rm f}}{4 \beta \cos^2 \frac{\varphi}{2}}$$

Constraints imposed by the boundary conditions

$$\sigma_{p;f}^{2} = \frac{\left\{4\,\sigma_{p;o}\cos^{2}\frac{\varphi}{2} + \sigma_{q;o}\left[\Omega\,t_{f} + \sin(\Omega\,t_{f} + \varphi) - \sin\varphi\right]\right\}^{2}}{16\,\cos^{2}\theta_{f}\cos^{2}\frac{\varphi}{2}\,\cos^{2}\frac{\Omega\,t_{f} + \varphi}{2}}$$
$$\frac{\sigma_{q;f}^{2}}{\sigma_{q;o}^{2}} = \frac{\cos^{2}\frac{\Omega\,t_{f} + \varphi}{2}}{\cos^{2}\frac{\varphi}{2}}$$

Exact value of the entropy production

Independent of $\partial_q \partial_p S \& \mu_{p,t}$: self-consistency of the extremal.

$$\frac{\mathcal{E}_{t_{\rm f},t_{\rm o}}}{\beta} = \frac{\mu_{q;{\rm f}}^2 \tau}{t_{\rm f}} + \frac{\sigma_{q;{\rm o}}^2 \Omega^2 \tau t_{\rm f}}{4 \beta \cos^2 \frac{\varphi}{2}}$$

Constraints imposed by the boundary conditions

$$\sigma_{p;f}^{2} = \frac{\left\{4 \,\sigma_{p;o} \cos^{2} \frac{\varphi}{2} + \sigma_{q;o} \left[\Omega \,t_{f} + \sin(\Omega \,t_{f} + \varphi) - \sin\varphi\right]\right\}^{2}}{16 \,\cos^{2} \theta_{f} \,\cos^{2} \frac{\varphi}{2} \,\cos^{2} \frac{\Omega \,t_{f} + \varphi}{2}}$$
$$\frac{\sigma_{q;f}^{2}}{\sigma_{q;o}^{2}} = \frac{\cos^{2} \frac{\Omega \,t_{f} + \varphi}{2}}{\cos^{2} \frac{\varphi}{2}}$$

A special case:
$$\sigma_{p;o} = \sigma_{p;f} \& \lambda = \sigma_{p;o} / \sigma_{q;o}$$

$$\frac{\mathcal{E}_{t_{\rm f},0}}{\beta} = \frac{\mu_{q;{\rm f}}^2 \tau}{t_{\rm f}} + \frac{\tau \left(1 + \lambda^2\right) (\sigma_{q;{\rm f}} - \sigma_{q;{\rm f}})^2}{\beta \, t_{\rm f}} - \frac{\tau \, \lambda^2 \, (\sigma_{q;{\rm f}} - \sigma_{q;{\rm o}})^3}{\beta \, \sigma_{q;{\rm o}} \, t_{\rm f}} + O(\sigma_{q;{\rm f}} - \sigma_{q;{\rm o}})^4$$

Wide scale separation: $\lambda = \sigma_{p;o}/\sigma_{q;o} \ll 1$

$$\frac{\mathcal{E}_{t_{\rm f},0}}{\beta} = \frac{\mu_{q;{\rm f}}^2 \tau}{t_{\rm f}} + \frac{(\sigma_{q;{\rm f}} - \sigma_{q;{\rm o}})^2}{\beta t_{\rm f}} + o\left(\lambda\right)$$

with

$$\begin{aligned} (\partial_{q}A)(0,q,t)|_{\mu_{p;t}=0} &= -\frac{\mu_{q;f} + \frac{q\left(\sigma_{q;f} - \sigma_{q;o}\right)}{\sigma_{q;o}}}{1 + \frac{t\left(\sigma_{q;f} - \sigma_{q;o}\right)}{t_{f}\sigma_{q;o}}}\frac{\tau}{t_{f}} + o\left(\lambda\right)\\ (\partial_{p}A)(0,q,t)|_{\mu_{p;t}=0} &= -\left(\partial_{p}A\right)(0,q,t)|_{\mu_{p;t}=0} + o\left(\lambda\right)\\ (\partial_{q}S)(0,q,t) &= \frac{\left(q - \frac{\mu_{q;f}t}{t_{f}}\right)}{\sigma_{q;o}^{2}\left[1 + \frac{t\left(\sigma_{q;f} - \sigma_{q;o}\right)}{t_{f}\sigma_{q;o}}\right]^{2}} + o\left(\lambda\right) \end{aligned}$$

for $\beta \parallel p \parallel \ll \lambda \ll 1$ we recover the entropy production of the optimally controlled Langevin–Smoluchowski model

UNIVERSITY OF HELSINK

$$\partial_t u = \left\{ \mathfrak{O}_0 + \frac{1}{\varepsilon} \mathfrak{O}_1 + \frac{1}{\varepsilon^2} \mathfrak{O}_2 \right\} u$$

•
$$\mathcal{D}_i \in \mathbb{R}^{d \times d}, i = 1, 2, 3$$

• $\operatorname{Ker}\mathcal{D}_0 = \operatorname{Ker}\mathcal{D}_0^{\dagger} = 1$
• $r_0 \in \operatorname{Ker}\mathcal{D}_0$ & $l_0 \in \operatorname{Ker}\mathcal{D}_0^{\dagger}$

$$u = u_0 + \varepsilon \, u_1 + \varepsilon^2 \, u_2 + \dots$$

Assume centering condition: $(l_0, \mathfrak{O}_1 r_0) = 0$

$$\mathcal{O}(1/\varepsilon^2) \quad \mathfrak{O}_0 \, u_0 = 0 \qquad \Rightarrow \quad u_0 = \alpha(t) \, r_0$$
$$\mathcal{O}(1/\varepsilon) \quad \mathfrak{O}_0 \, u_1 = -\mathfrak{O}_1 \, u_0 \qquad \Rightarrow \quad u_1 = \alpha(t) \, g \; \text{ s.t. } \, \mathfrak{O}_0 \, g = \mathfrak{O}_1 \, r_0$$
$$\mathcal{O}(1) \qquad \mathfrak{O}_0 u_2 = -\partial_t u_0 - \mathfrak{O}_1 u_1 - \mathfrak{O}_2 u_0 \quad \Rightarrow \quad \partial_t \alpha = \frac{(l_0, \mathfrak{O}_2 \, r_0 - \mathfrak{O}_1 \, g)}{(l_0, r_0)} \alpha$$

by Fredholm's alternative

$$\partial_t u = \left\{ \mathfrak{O}_0 + \frac{1}{\varepsilon} \mathfrak{O}_1 + \frac{1}{\varepsilon^2} \mathfrak{O}_2 \right\} u$$

•
$$\mathfrak{D}_i \in \mathbb{R}^{d \times d}, i = 1, 2, 3$$

• $\operatorname{Ker} \mathfrak{D}_0 = \operatorname{Ker} \mathfrak{D}_0^{\dagger} = 1$
• $r_0 \in \operatorname{Ker} \mathfrak{D}_0$ & $l_0 \in \operatorname{Ker} \mathfrak{D}_0^{\dagger}$

$$u = u_0 + \varepsilon \, u_1 + \varepsilon^2 \, u_2 + \dots$$

Assume centering condition: $(l_0, \mathfrak{O}_1 r_0) = 0$

$$\mathcal{O}(1/\varepsilon^2) \quad \mathfrak{D}_0 \, u_0 = 0 \qquad \Rightarrow \quad u_0 = \alpha(t) \, r_0$$
$$\mathcal{O}(1/\varepsilon) \quad \mathfrak{D}_0 \, u_1 = -\mathfrak{D}_1 \, u_0 \qquad \Rightarrow \quad u_1 = \alpha(t) \, g \; \text{ s.t. } \; \mathfrak{D}_0 \, g = \mathfrak{D}_1 \, r_0$$
$$\mathcal{O}(1) \qquad \mathfrak{D}_0 u_2 = -\partial_t u_0 - \mathfrak{D}_1 u_1 - \mathfrak{D}_2 u_0 \quad \Rightarrow \quad \partial_t \alpha = \frac{(l_0, \mathfrak{D}_2 \, r_0 - \mathfrak{D}_1 \, g)}{(l_0, r_0)} \alpha$$

by Fredholm's alternative

$$\partial_t u = \left\{ \mathfrak{O}_0 + \frac{1}{\varepsilon} \mathfrak{O}_1 + \frac{1}{\varepsilon^2} \mathfrak{O}_2 \right\} u$$

•
$$\mathfrak{O}_i \in \mathbb{R}^{d \times d}, i = 1, 2, 3$$

• $\operatorname{Ker}\mathfrak{O}_0 = \operatorname{Ker}\mathfrak{O}_0^{\dagger} = 1$
• $r_0 \in \operatorname{Ker}\mathfrak{O}_0$ & $l_0 \in \operatorname{Ker}\mathfrak{O}_0^{\dagger}$

$$u = u_0 + \varepsilon u_1 + \varepsilon^2 u_2 + \dots$$

Assume centering condition: $(l_0, \mathfrak{O}_1 r_0) = 0$

 $\mathcal{O}(1/\varepsilon^2) \quad \mathfrak{O}_0 u_0 = 0 \qquad \Rightarrow \quad u_0 = \alpha(t) r_0$ $\mathcal{O}(1/\varepsilon) \quad \mathfrak{O}_0 u_1 = -\mathfrak{O}_1 u_0 \qquad \Rightarrow \quad u_1 = \alpha(t) g \text{ s.t. } \mathfrak{O}_0 g = \mathfrak{O}_1 r_0$ $\mathcal{O}(1) \qquad \mathfrak{O}_0 u_2 = -\partial_t u_0 - \mathfrak{O}_1 u_1 - \mathfrak{O}_2 u_0 \qquad \Rightarrow \quad \partial_t \alpha = \frac{(l_0, \mathfrak{O}_2 r_0 - \mathfrak{O}_1 g)}{(l_0, r_0)} \alpha$

by Fredholm's alternative

$$\partial_t u = \left\{ \mathfrak{O}_0 + \frac{1}{\varepsilon} \mathfrak{O}_1 + \frac{1}{\varepsilon^2} \mathfrak{O}_2 \right\} u$$

•
$$\mathcal{D}_i \in \mathbb{R}^{d \times d}, i = 1, 2, 3$$

• $\operatorname{Ker}\mathcal{D}_0 = \operatorname{Ker}\mathcal{D}_0^{\dagger} = 1$
• $r_0 \in \operatorname{Ker}\mathcal{D}_0$ & $l_0 \in \operatorname{Ker}\mathcal{D}_0^{\dagger}$

$$u = u_0 + \varepsilon \, u_1 + \varepsilon^2 \, u_2 + \dots$$

Assume centering condition: $(l_0, \mathfrak{O}_1 r_0) = 0$

$$\mathcal{O}(1/\varepsilon^2) \quad \mathfrak{O}_0 u_0 = 0 \qquad \qquad \Rightarrow \quad u_0 = \alpha(t) r_0$$

$$\mathcal{O}(1/\varepsilon) \quad \mathfrak{O}_0 u_1 = -\mathfrak{O}_1 u_0 \qquad \qquad \Rightarrow \quad u_1 = \alpha(t) g \text{ s.t. } \mathfrak{O}_0 g = \mathfrak{O}_1 r_0$$

$$\mathcal{O}(1) \qquad \mathcal{O}_0 u_2 = -\partial_t u_0 - \mathcal{O}_1 u_1 - \mathcal{O}_2 u_0 \quad \Rightarrow \quad \partial_t \alpha = \frac{(l_0, \mathcal{O}_2 r_0 - \mathcal{O}_1 g)}{(l_0, r_0)} \alpha$$

by Fredholm's alternative

UNIVERSITY OF HELSING

Extremal eqs under wide scale separation

Boundary conditions: $\lambda \ll 1$

$$m_{\rm o}(\boldsymbol{p},\boldsymbol{q}) = \left(\frac{\beta}{2\pi\lambda}\right)^d e^{-\beta \frac{\|\boldsymbol{p}^2\|}{2\lambda^2} - \beta U_{\rm o}(\boldsymbol{q})} \qquad m_{\rm f}(\boldsymbol{p},\boldsymbol{q}) = \left(\frac{\beta}{2\pi\lambda}\right)^d e^{-\beta \frac{\|\boldsymbol{p}\|^2}{2\lambda^2} - \beta U_{\rm f}(\boldsymbol{q})}$$

Multiscale asymptotic equations

$$A(\boldsymbol{x},t) = \sum_{i=0}^{2} \lambda^{i} A_{(i)} \left(\frac{\boldsymbol{p}}{\lambda}, \boldsymbol{q}, t \dots \right) + o(\lambda^{2}) := \tilde{A} \left(\tilde{\boldsymbol{p}}, \boldsymbol{q}, t \dots \right)$$

and similarly for V, S:

eq.
$$\frac{1}{\lambda} \widetilde{(\tilde{S}, \tilde{V})}_{P} + \frac{1}{\lambda^{2} \beta} \widetilde{\mathfrak{D}}^{(\tilde{S})} (\tilde{V} - 2\tilde{A}) = 0$$

$$\tau \, \partial_{t} \tilde{V} + \frac{1}{\lambda} \widetilde{(\tilde{A}, \tilde{V})}_{P} - \frac{1}{\lambda^{2}} \left(\partial_{\tilde{p}} \tilde{A} \right) \cdot \partial_{\tilde{p}} \left(\tilde{V} - \tilde{A} \right) = 0$$

eq.
$$\tau \, \partial_{t} \tilde{S} + \frac{1}{\lambda} \widetilde{(\tilde{A}, \tilde{S})}_{P} + \frac{1}{\lambda^{2} \beta} \widetilde{\mathfrak{D}}^{(\tilde{S})} \tilde{A} = 0$$

stochastic entropy eq.

Extremal eqs under wide scale separation

Boundary conditions: $\lambda \ll 1$

$$\mathsf{m}_{\mathsf{o}}(\boldsymbol{p},\boldsymbol{q}) = \left(\frac{\beta}{2\pi\lambda}\right)^{d} e^{-\beta \frac{\|\boldsymbol{p}^{2}\|}{2\lambda^{2}} - \beta U_{\mathsf{o}}(\boldsymbol{q})} \qquad \mathsf{m}_{\mathsf{f}}(\boldsymbol{p},\boldsymbol{q}) = \left(\frac{\beta}{2\pi\lambda}\right)^{d} e^{-\beta \frac{\|\boldsymbol{p}\|^{2}}{2\lambda^{2}} - \beta U_{\mathsf{f}}(\boldsymbol{q})}$$

Multiscale asymptotic equations

$$A(\mathbf{x},t) = \sum_{i=0}^{2} \lambda^{i} A_{(i)}\left(\frac{\mathbf{p}}{\lambda}, \mathbf{q}, t...\right) + o(\lambda^{2}) := \tilde{A}\left(\tilde{\mathbf{p}}, \mathbf{q}, t...\right)$$

and similarly for V, S:

value function

extremal condition eq.
$$\frac{1}{\lambda} (\tilde{\tilde{S}}, \tilde{\tilde{V}})_{P} + \frac{1}{\lambda^{2} \beta} \tilde{\mathfrak{D}}^{(\tilde{S})} (\tilde{V} - 2\tilde{A}) = 0$$
value function eq.
$$\tau \partial_{t} \tilde{V} + \frac{1}{\lambda} (\tilde{A}, \tilde{\tilde{V}})_{P} - \frac{1}{\lambda^{2}} (\partial_{\bar{p}} \tilde{A}) \cdot \partial_{\bar{p}} (\tilde{V} - \tilde{A}) = 0$$
stochastic entropy eq.
$$\tau \partial_{t} \tilde{S} + \frac{1}{\lambda} (\tilde{A}, \tilde{\tilde{S}})_{P} + \frac{1}{\lambda^{2} \beta} \tilde{\mathfrak{D}}^{(\tilde{S})} \tilde{A} = 0$$

Multiscale perturbation theory

Centering condition

Ornstein-Uhlenbeck operator

$$\tilde{\mathfrak{D}}^{(S_0)} = -\tilde{p} \cdot \partial_{\bar{p}} + \frac{1}{\beta} \partial_{\bar{p}}^2 \qquad \begin{array}{c} 1 \in \operatorname{Ker} \mathfrak{D}^{(S_0)} \\ \exp\{-\frac{\beta \|\tilde{p}\|^2}{2}\} \in \operatorname{Ker} \mathfrak{G}^{\dagger} \end{array}$$

 $\mathcal{O}(1/\varepsilon^2)$

$$0 = \partial_{\tilde{p}} \tilde{A}_{(0)} = \partial_{\tilde{p}} \tilde{V}_{(0)} \implies \tilde{A}_{(0)}, \tilde{V}_{(0)} \in \operatorname{Ker}\mathfrak{D}$$
$$\mathfrak{D}^{(S_0)} \tilde{A}_{(0)} = 0 \implies \tilde{S}_{(0)}(\tilde{p}) = \frac{\|\tilde{p}\|^2}{2} + \tilde{S}_{(0:0)}(q, t, \dots)$$

$\mathcal{O}(1/\varepsilon)$: centering condition

$$\tilde{A}_{(1)} = -\tilde{\boldsymbol{p}} \cdot \partial_{\boldsymbol{q}} \tilde{A}_{(0)}$$

Centering condition

Ornstein-Uhlenbeck operator

$$ilde{\mathfrak{D}}^{(S_0)} = - ilde{p} \cdot \partial_{ ilde{p}} + rac{1}{eta} \partial_{ ilde{p}}^2 \qquad \begin{array}{ccc} 1 &\in \operatorname{Ker} \mathfrak{D}^{(S_0)} \\ \exp\{-rac{eta \| ilde{p}\|^2}{2}\} &\in \operatorname{Ker} \mathfrak{G}^{\dagger} \end{array}$$

 $\mathcal{O}(1/\varepsilon^2)$

$$0 = \partial_{\bar{\boldsymbol{p}}} \tilde{A}_{(0)} = \partial_{\bar{\boldsymbol{p}}} \tilde{V}_{(0)} \implies \tilde{A}_{(0)}, \tilde{V}_{(0)} \in \operatorname{Ker}\mathfrak{D}$$
$$\mathfrak{D}^{(S_0)} \tilde{A}_{(0)} = 0 \implies \tilde{S}_{(0)}(\tilde{\boldsymbol{p}}) = \frac{\|\tilde{\boldsymbol{p}}\|^2}{2} + \tilde{S}_{(0:0)}(\boldsymbol{q}, t, \dots)$$

$\mathcal{O}(1/\varepsilon)$: centering condition

$$\tilde{A}_{(1)} = -\tilde{\boldsymbol{p}} \cdot \partial_{\boldsymbol{q}} \tilde{A}_{(0)}$$

Multiscale perturbation theory

Centering condition

Ornstein-Uhlenbeck operator

$$ilde{\mathfrak{D}}^{(S_0)} = - ilde{p} \cdot \partial_{ ilde{p}} + rac{1}{eta} \partial_{ ilde{p}}^2 \qquad \begin{array}{ccc} 1 &\in \operatorname{Ker} \mathfrak{D}^{(S_0)} \\ \exp\{-rac{eta \| ilde{p}\|^2}{2}\} &\in \operatorname{Ker} \mathfrak{G}^{\dagger} \end{array}$$

 $\mathcal{O}(1/\varepsilon^2)$

$$0 = \partial_{\tilde{p}} \tilde{A}_{(0)} = \partial_{\tilde{p}} \tilde{V}_{(0)} \implies \tilde{A}_{(0)}, \tilde{V}_{(0)} \in \operatorname{Ker}\mathfrak{D}$$
$$\mathfrak{D}^{(S_0)} \tilde{A}_{(0)} = 0 \implies \tilde{S}_{(0)}(\tilde{p}) = \frac{\|\tilde{p}\|^2}{2} + \tilde{S}_{(0:0)}(q, t, \dots)$$

$\mathcal{O}(1/\varepsilon)$: centering condition

$$\tilde{A}_{(1)} = -\tilde{\boldsymbol{p}} \cdot \partial_{\boldsymbol{q}} \tilde{A}_{(0)}$$

INIVERSITY OF HELSING

Cell problem: Monge-Ampère-Kantorovich

 $\mathcal{O}(1)$

value function eq.

$$\tau \,\partial_t \tilde{A}_{(0)} - \frac{\parallel \partial_q \tilde{A}_{(0)} \parallel^2}{2} = 0$$

stochastic entropy eq.

$$\tau \,\partial_t \tilde{S}_{(0)} - \partial_q \tilde{A}_{(0)} \cdot \partial_q \tilde{S}_{(0)} + \tilde{\boldsymbol{p}} \cdot \partial_q \otimes \partial_q \tilde{A}_{(0)} \cdot \partial_{\tilde{\boldsymbol{p}}} \tilde{S}_{(0)} + \frac{1}{\beta} \tilde{\mathfrak{D}}^{(S_{(0)})} \tilde{A}_{(2)} = 0$$

Averaging over Maxwell's distribution yields the cell problem

$$\tau \partial_t \tilde{S}_{(0)} - \partial_q \tilde{A}_{(0)} \cdot \partial_q \tilde{S}_{(0)} + \frac{1}{\beta} \partial_q^2 \tilde{A}_{(0)} = 0$$

Multiscale perturbation theory

Cell problem: Monge-Ampère-Kantorovich

 $\mathcal{O}(1)$

value function eq.

$$\tau \,\partial_t \tilde{A}_{(0)} - \frac{\parallel \partial_q \tilde{A}_{(0)} \parallel^2}{2} = 0$$

stochastic entropy eq.

$$\tau \,\partial_t \tilde{S}_{(0)} - \partial_q \tilde{A}_{(0)} \cdot \partial_q \tilde{S}_{(0)} + \tilde{\boldsymbol{p}} \cdot \partial_q \otimes \partial_q \tilde{A}_{(0)} \cdot \partial_{\tilde{\boldsymbol{p}}} \tilde{S}_{(0)} + \frac{1}{\beta} \tilde{\mathfrak{D}}^{(S_{(0)})} \tilde{A}_{(2)} = 0$$

Averaging over Maxwell's distribution yields the cell problem

$$\tau \partial_t \tilde{S}_{(0)} - \partial_q \tilde{A}_{(0)} \cdot \partial_q \tilde{S}_{(0)} + \frac{1}{\beta} \partial_q^2 \tilde{A}_{(0)} = 0$$

$$\mathcal{E}_{t_{\rm f},0} = \beta \, \int_0^{t_{\rm f}} \frac{{\rm d}t}{\tau} \int_{\mathbb{R}^d} {\rm d}^d q \, \beta^{d/2} e^{-\beta \, S_{(0,0)}} \parallel \partial_q A_{(0)} \parallel^2 + O(\lambda)$$

Summary

- Symplectic structure introduces non local constraint.
- Because of non-coercivity, parametric families of extremals.
- For large scale separations, both effects are weak ⇒ recovery of the Langevin-Smoluchowski entropy production.

Open questions

singular control ?

Heat release minimization by kinetic+potential Hamiltonian

$$\tau \,\partial_t V + \boldsymbol{p} \cdot \partial_{\boldsymbol{p}} V - (\boldsymbol{p} + \partial_q U) \cdot \partial_{\boldsymbol{p}} V + \frac{1}{\beta} \partial_{\boldsymbol{p}}^2 V + \frac{\|\boldsymbol{p}\|^2}{2} = 0$$

Summary

- Symplectic structure introduces non local constraint.
- Because of non-coercivity, parametric families of extremals.
- For large scale separations, both effects are weak ⇒ recovery of the Langevin-Smoluchowski entropy production.

Open questions

singular control ?

Heat release minimization by kinetic+potential Hamiltonian

$$\tau \,\partial_t V + \boldsymbol{p} \cdot \partial_{\boldsymbol{p}} V - (\boldsymbol{p} + \partial_{\boldsymbol{q}} U) \cdot \partial_{\boldsymbol{p}} V + \frac{1}{\beta} \partial_{\boldsymbol{p}}^2 V + \frac{\|\boldsymbol{p}\|^2}{2} = 0$$

Some more about the foregoing

- Aurell, Mejia-Monasterio, M.-G., PRL 106, 250601 (2011)
- Aurell, Mejia-Monasterio, M.-G., PRE 85, 020103 (2012)
- Aurell, Gawedzki, Mejia-Monasterio, Mohayaee, M.-G., JSP 147, 487 (2012)
- M.-G., Mejia-Monasterio , Peliti, JSP 150, 181 (2013)
- M.G., J. Phys. A, 46, 275002 (2013)
- M.G., "On extremals of the entropy production by Langevin–Kramers dynamics", in preparation.
- THANK YOU !

Some more about the foregoing

- Aurell, Mejia-Monasterio, M.-G., PRL 106, 250601 (2011)
- Aurell, Mejia-Monasterio, M.-G., PRE 85, 020103 (2012)
- Aurell, Gawedzki, Mejia-Monasterio, Mohayaee, M.-G., JSP 147, 487 (2012)
- M.-G., Mejia-Monasterio , Peliti, JSP 150, 181 (2013)
- M.G., J. Phys. A, 46, 275002 (2013)
- M.G., "On extremals of the entropy production by Langevin–Kramers dynamics", in preparation.
- THANK YOU !

